If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+10x-5=0
a = 25; b = 10; c = -5;
Δ = b2-4ac
Δ = 102-4·25·(-5)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{6}}{2*25}=\frac{-10-10\sqrt{6}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{6}}{2*25}=\frac{-10+10\sqrt{6}}{50} $
| X+19=4x+7 | | (4y-7)(5-Y)=0 | | 18z^2+49z+10=0 | | 3×+4y=12 | | 7x-2=-x+30 | | 14z^2-z-4=0 | | 9h^2+2h-1224=0 | | (x-5)^=144 | | -30=6x-12 | | F(x)=4x^2+4/2x^2+8 | | x^-4=0 | | 6.05F=2.25+0.20(m-1) | | 72=-16t^2+64t+112 | | 72=16t^2+64t+112 | | 7x+3(2-x)=18 | | 7^(x-5)=2 | | 20z^2+13z-15=0 | | (-2,K)(2,0);m=-1 | | 15z^2-28z+12=0 | | -7u+4(u+6)=21 | | x+1÷2=-7 | | F(x)=|x|+2 | | 5x+2.3+2x=-1.8-3x | | 4x+7=15=2x | | (4/12)=(x/84) | | 2(4y-6)=y-13 | | (2x-9)/4=2+x/12 | | F(x)=x3-10x-5 | | 5(x - 4) = 3x +2 | | 0.3^x=293x+4362 | | -6x+2(5(x+1)+8=38) | | -2y-4=-24 |